Menstrual Cycle Fluctuations of Progesterone and the Effect on Sleep Regulation
Christine E. Cherpak, DCN-c
Maryland University of Integrative Health, 7750 Montpelier Rd, Laurel, MD 20723, USA
Sherryl J. Van Lare, DCN-c
Maryland University of Integrative Health, 7750 Montpelier Rd, Laurel, MD 20723, USA
XML
PDF

Keywords

Sleep
Menstrual cycle
Progesterone
Melatonin
GABA
Cortisol
XML
PDF

Abstract

Women of reproductive age experience higher rates of sleep disturbance than their male counterparts, leading to lack of restorative sleep and increasing risk for chronic disease. The objective of this review is to overlay the menstrual cycle with sleep regulation to develop an evidence-based theoretical model that directs clinical interventions for improved sleep in affected women. Utilizing the basic mechanisms for sleep and the menstrual cycle, in addition to evidence for sleep and hormonal dysregulation, hormonal fluctuations are mapped to variations in gamma-aminobutyric acid (GABA), melatonin, and cortisol levels. Effective interventions that may be included in individualized treatment plans – varying based on the scope of practice for each practitioner – are presented, along with the impetus for future research to explore the relationship between the menstrual cycle and sleep regulation.

XML
PDF

References

1. Kalmbach DA, Cuamatzi-Castelan AS, Tonnu CV, et al. Hyperarousal and sleep reactivity in insomnia: current insights. Nat Sci Sleep. 2018;10:193–C201. doi:10.2147/NSS.S138823.
2. Soares CN, Murray BJ. Sleep disorders in women: clinical evidence and treatment strategies. Psychiatr Clin North Am. 2006;29(4):1095–C113; abstract xi. doi:10.1016/j.psc.2006.09.002.
3. Mallampalli MP, Carter CL. Exploring sex and gender differences in sleep health: a Society for Women's Health research report. J Womens Health (Larchmt). 2014;23(7):553–C62. doi:10.1089/jwh.2014.4816.
4. Nunn CL, Samson DR, Krystal AD. Shining evolutionary light on human sleep and sleep disorders. Evol Med Public Health. 2016;2016(1):227–C43. doi:10.1093/emph/eow018.
5. Eugene AR, Masiak J. The neuroprotective aspects of sleep. MEDtube Sci. 2015;3(1):35–C40.
6. Klumpers UMH, Veltman DJ, van Tol M-J, et al. Neurophysiological effects of sleep deprivation in healthy adults, a pilot study. PLoS One. 2015;10(1):e0116906. doi:10.1371/journal.pone.0116906.
7. Tasali E, Leproult R, Ehrmann DA, Van Cauter E. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc Natl Acad Sci USA. 2008;105(3):1044–C9. doi:10.1073/pnas.0706446105.
8. Yonkers KA, Simoni MK. Premenstrual disorders. AJOG. 2018;218(1):68–C74. doi:10.1016/j.ajog.2017.05.045.
9. Hantsoo L, Epperson CN. Premenstrual dysphoric disorder: epidemiology and treatment. Curr Psychiatry Rep. 2015;17(11):87. doi:10.1007/s11920-015-0628-3.
10. Lord C, Sekerovic Z, Carrier J. Sleep regulation and sex hormones exposure in men and women across adulthood. Pathol Biol. 2014;62(5):302–C10. doi:10.1016/j.patbio.2014.07.005.
11. Kloss JD, Perlis ML, Zamzow JA, et al. Sleep, sleep disturbance, and fertility in women. Sleep Med Rev. 2015;22:78–C87. doi:10.1016/j.smrv.2014.10.005.
12. Krishnan V, Collop NA. Gender differences in sleep disorders. Curr Opin Pulm Med. 2006;12(6):383–C9. doi:10.1097/01.mcp.0000245705.69440.6a.
13. Mehta N, Shafi F, Bhat A. Unique aspects of sleep in women. Mo Med. 2015;112(6):430–C4.
14. Mong JA, Baker FC, Mahoney MM, et al. Sleep, rhythms, and the endocrine brain: influence of sex and gonadal hormones. J Neurosci. 2011;31(45):16107–C16. doi:10.1523/JNEUROSCI.4175-11.2011.
15. Malhotra S, Sawhney G, Pandhi P. The therapeutic potential of melatonin: a review of the science. MedGenMed. 2004;6(2):46. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1395802/ Accessed August 15, 2018.
16. Zisapel N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol. 2018;175(16):3190–C9. doi:10.1111/bph.14116.
17. Plano SA, Casiraghi LP, Garc––a Moro P, et al. Circadian and metabolic effects of light: implications in weight homeostasis and health. Front Neurol. 2017;8:558. doi:10.3389/fneur.2017.00558.
18. Borjigin J, Zhang LS, Calinescu A-A. Circadian regulation of pineal gland rhythmicity. Mol Cell Endocrinol. 2012;349(1):13–C9. doi:10.1016/j.mce.2011.07.009.
19. Pandi-Perumal SR, Srinivasan V, Spence DW, Cardinali DP. Role of the melatonin system in the control of sleep: therapeutic implications. CNS Drugs. 2007;21(12):995–C1018.
20. Costello RB, Lentino CV, Boyd CC, et al. The effectiveness of melatonin for promoting healthy sleep: a rapid evidence assessment of the literature. Nutr J. 2014;13:106. doi:10.1186/1475-2891-13-106.
21. Lewy AJ. The dim light melatonin onset, melatonin assays and biological rhythm research in humans. Biol Signals Recept. 1999;8(1-2):79–C83. doi:10.1159/000014573.
22. Szewczyk-Golec K, Rajewski P, Gackowski M, et al. Melatonin supplementation lowers oxidative stress and regulates adipokines in obese patients on a calorie-restricted diet. Oxid Med Cell Longev. 2017; 2017:8494107. doi:10.1155/2017/8494107.
23. Brainard GC, Rollag MD, Hanifin JP. Photic regulation of melatonin in humans: ocular and neural signal transduction. J Biol Rhythms. 1997;12(6):537–C46. doi:10.1177/074873049701200608.
24. Buhr ED, Yoo S-H, Takahashi JS. Temperature as a universal resetting cue for mammalian circadian oscillators. Science. 2010;330(6002):379–C85. doi:10.1126/science.1195262.
25. Smolensky MH, Hermida RC, Castriotta RJ, Portaluppi F. Role of sleep-wake cycle on blood pressure circadian rhythms and hypertension. Sleep Med. 2007;8(6):668–C80. doi:10.1016/j.sleep.2006.11.011.
26. Gottesmann C. GABA mechanisms and sleep. Neuroscience. 2002;111(2):231–C9.
27. Neubauer DN, Pandi-Perumal SR, Spence DW, et al. Pharmacotherapy of insomnia. J Cent Nerv Syst Dis. 2018;10:1179573518770672. doi:10.1177/1179573518770672.
28. Amihăesei IC, Mungiu OC. Main neuroendocrine features and therapy in primary sleep troubles. Rev Med Chir Soc Med Nat Iasi. 2012;116(3):862–C6.
29. Kay DB, Buysse DJ. Hyperarousal and beyond: new insights to the pathophysiology of insomnia disorder through functional neuroimaging studies. Brain Sci. 2017;7(3):pii:E23. doi:10.3390/brainsci7030023.
30. Winkelman JW, Buxton OM, Jensen JE, et al. Reduced brain GABA in primary insomnia: preliminary data from 4T proton magnetic resonance spectroscopy (1H-MRS). Sleep. 2008;31(11):1499–C506.
31. Morgan PT, Pace-Schott EF, Mason GF, et al. Cortical GABA levels in primary insomnia. Sleep. 2012;35(6):807–C14. doi:10.5665/sleep.1880.
32. Rodenbeck A, Huether G, Rüther E, Hajak G. Interactions between evening and nocturnal cortisol secretion and sleep parameters in patients with severe chronic primary insomnia. Neurosci Lett. 2002;324(2):159–C63.
33. Vgontzas AN, Bixler EO, Lin HM, et al. Chronic insomnia is associated with nyctohemeral activation of the hypothalamic-pituitary-adrenal axis: clinical implications. J Clin Endocrinol Metab. 2001;86(8):3787–C94. doi:10.1210/jcem.86.8.7778.
34. Xia L, Chen G-H, Li Z-H, et al. Alterations in hypothalamus-pituitary-adrenal/thyroid axes and gonadotropin-releasing hormone in the patients with primary insomnia: a clinical research. PLoS One. 2013;8(8):e71065. doi:10.1371/journal.pone.0071065.
35. Seelig E, Keller U, Klarhöfer M, et al. Neuroendocrine regulation and metabolism of glucose and lipids in primary chronic insomnia: a prospective case-control study. PLoS One. 2013;8(4):e61780. doi:10.1371/journal.pone.0061780.
36. Kelly JR, Kennedy PJ, Cryan JF, et al. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. 2015;9:392. doi:10.3389/fncel.2015.00392.
37. Jenkins TA, Nguyen JCD, Polglaze KE, Bertrand PP. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients. 2016;8(1):pii:E56. doi:10.3390/nu8010056.
38. Choi S-W, Friso S. Epigenetics: a new bridge between nutrition and health. Adv Nutr. 2010;1(1):8–C16. doi:10.3945/an.110.1004.
39. Škovierová H, Vidomanová E, Mahmood S, et al. The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int J Mol Sci. 2016;17(10):1733. doi:10.3390/ijms17101733.
40. Portas CM, Bjorvatn B, Ursin R. Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Prog Neurobiol. 2000;60(1):13–C35.
41. Siegel JM. The neurotransmitters of sleep. J Clin Psychiatry. 2004;65 Suppl 16:4–C7.
42. Ancelin M-L, Scali J, Norton J, et al. Heterogeneity in HPA axis dysregulation and serotonergic vulnerability to depression. Psychoneuroendocrinology. 2017;77:90–C4. doi:10.1016/j.psyneuen.2016.11.016.
43. Tafet GE, Idoyaga-Vargas VP, Abulafia DP, et al. Correlation between cortisol level and serotonin uptake in patients with chronic stress and depression. Cogn Affect Behav Neurosci. 2001;1(4):388–C93.
44. van Praag HM. Faulty cortisol/serotonin interplay. Psychopathological and biological characterisation of a new, hypothetical depression subtype (SeCA depression). Psychiatry Res. 1996;65(3):143–C57.
45. Stachowicz M, Lebiedzi ska A. The effect of diet components on the level of cortisol. Eur Food Res Technol. 2016;242(12):2001–C9. doi:10.1007/s00217-016-2772-3.
46. Schnorr SL, Bachner HA. Integrative therapies in anxiety treatment with special emphasis on the gut microbiome. Yale J Biol Med. 2016;89(3):397–C422.
47. Buxton OM, Pavlova M, Reid EW, et al. Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes. 2010;59(9):2126–C33. doi:10.2337/db09-0699.
48. Golem DL, Martin-Biggers JT, Koenings MM, et al. An integrative review of sleep for nutrition professionals. Adv Nutr. 2014;5(6):742–C59. doi:10.3945/an.114.006809.
49. Reed BG, Carr BR. The normal menstrual cycle and the control of ovulation. In: De Groot LJ, Chrousos G, Dungan K, et al., eds. Endotext. South Dartmouth, MA: MDText.com, Inc.; 2000. http://www.ncbi.nlm.nih.gov/books/NBK279054/ Accessed August 14, 2018.
50. Knudtson J, McLaughlin J. Menstrual cycle. In: Merck Manual: Consumer Version; 2016. https://www.merckmanuals.com/home/women-s-health-issues/biology-of-the-female-reproductive-system/menstrual-cycle Accessed August 14, 2018.
51. Stricker R, Eberhart R, Chevailler M-C, et al. Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyzer. Clin Chem Lab Med. 2006;44(7):883–C7. doi:10.1515/CCLM.2006.160.
52. Kumar P, Magon N. Hormones in pregnancy. Niger Med J. 2012;53(4):179–C83. doi:10.4103/0300-1652.107549.
53. Caufriez A, Leproult R, L––Hermite-Bal––riaux M, et al. Progesterone prevents sleep disturbances and modulates GH, TSH, and melatonin secretion in postmenopausal women. J Clin Endocrinol Metab. 2011;96(4):E614–C23. doi:10.1210/jc.2010-2558.
54. Maybin JA, Critchley HOD. Menstrual physiology: implications for endometrial pathology and beyond. Hum Reprod Update. 2015;21(6):748–C61. doi:10.1093/humupd/dmv038.
55. Henriet P, Gaide Chevronnay HP, Marbaix E. The endocrine and paracrine control of menstruation. Mol Cell Endocrinol. 2012;358(2):197–C207. doi:10.1016/j.mce.2011.07.042.
56. Jabbour HN, Kelly RW, Fraser HM, Critchley HOD. Endocrine regulation of menstruation. Endocr Rev. 2006;27(1):17–C46. doi:10.1210/er.2004-0021.
57. Nowakowski S, Meers J, Heimbach E. Sleep and women––s health. Sleep Med Res. 2013;4(1):1–C22.
58. Zheng H, Harlow SD, Kravitz HM, et al. Actigraphy-defined measures of sleep and movement across the menstrual cycle in midlife menstruating women: study of Women––s Health Across the Nation Sleep Study. Menopause. 2015;22(1):66–C74. doi:10.1097/GME.0000000000000249.
59. de Zambotti M, Willoughby AR, Sassoon SA, et al. Menstrual cycle-related variation in physiological sleep in women in the early menopausal transition. J Clin Endocrinol Metab. 2015;100(8):2918–C26. doi:10.1210/jc.2015-1844.
60. Clawson BC, Durkin J, Aton SJ. Form and function of sleep spindles across the lifespan. Neural Plasticity. 2016;2016:6936381. doi:10.1155/2016/6936381.
61. Driver HS, Dijk DJ, Werth E, et al. Sleep and the sleep electroencephalogram across the menstrual cycle in young healthy women. J Clin Endocrinol Metab. 1996;81(2):728–C35. doi:10.1210/jcem.81.2.8636295.
62. Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science. 1993;262(5134):679–C85.
63. Shechter A, Boivin DB. Sleep, hormones, and circadian rhythms throughout the menstrual cycle in healthy women and women with premenstrual dysphoric disorder. Int J Endocrinol. 2010;2010:259345. doi:10.1155/2010/259345.
64. Su H-W, Yi Y-C, Wei T-Y, et al. Detection of ovulation, a review of currently available methods. Bioeng Trans Med. 2017;2(3):238–C46. doi:10.1002/btm2.10058.
65. Halbreich U, Petty F, Yonkers K, et al. Low plasma gamma-aminobutyric acid levels during the late luteal phase of women with premenstrual dysphoric disorder. Am J Psychiatry. 1996;153(5):71820. doi:10.1176/ajp.153.5.718.
66. Sundström I, Andersson A, Nyberg S, et al. Patients with premenstrual syndrome have a different sensitivity to a neuroactive steroid during the menstrual cycle compared to control subjects. Neuroendocrinology. 1998;67(2):126–C38. doi:10.1159/000054307.
67. Arafat ES, Hargrove JT, Maxson WS, et al. Sedative and hypnotic effects of oral administration of micronized progesterone may be mediated through its metabolites. Am J Obstet Gynecol. 1988;159(5):1203–C9.
68. Bitran D, Shiekh M, McLeod M. Anxiolytic effect of progesterone is mediated by the neurosteroid allopregnanolone at brain GABAA receptors. J Neuroendocrinol. 1995;7(3):171–C7.
69. Fayed AE. Review article: health benefits of some physiologically active ingredients and their suitability as yoghurt fortifiers. J Food Sci Technol. 2015;52(5):2512–C21. doi:10.1007/s13197-014-1393-8.
70. Brown J, O–– Brien PMS, Marjoribanks J, Wyatt K. Selective serotonin reuptake inhibitors for premenstrual syndrome. Cochrane Database Syst Rev. 2009;(2):CD001396. doi:10.1002/14651858.CD001396.pub2.
71. Marjoribanks J, Brown J, O––Brien PMS, Wyatt K. Selective serotonin reuptake inhibitors for premenstrual syndrome. Cochrane Database Syst Rev. 2013;(6):CD001396. doi:10.1002/14651858.CD001396.pub3.
72. Pearlstein T. Treatment of premenstrual dysphoric disorder: therapeutic challenges. Expert Rev Clinl Pharmacol. 2016;9(4):493–C6. doi:10.1586/17512433.2016.1142371.
73. Herrera AY, Nielsen SE, Mather M. Stress-induced increases in progesterone and cortisol in naturally cycling women. Neurobiol Stress. 2016;3:96–C104. doi:10.1016/j.ynstr.2016.02.006.
74. Wihlbäck A-C, Sundström Poromaa I, Bixo M, et al. Influence of menstrual cycle on platelet serotonin uptake site and serotonin2A receptor binding. Psychoneuroendocrinology. 2004;29(6):757–C66. doi:10.1016/S0306-4530(03)00120-3.
75. Zlotnik A, Gruenbaum BF, Mohar B, et al. The effects of estrogen and progesterone on blood glutamate levels: evidence from changes of blood glutamate levels during the menstrual cycle in women. Biol Reprod. 2011;84(3):581–C6. doi:10.1095/biolreprod.110.088120.
76. Kawashima K, Oohata H, Fujimoto K, Suzuki T. Plasma concentration of acetylcholine in young women. Neurosci Lett. 1987;80(3):339–C42.
77. Valera S, Ballivet M, Bertrand D. Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci USA. 1992;89(20):9949–C53.
78. Thakkar MM. Histamine in the regulation of wakefulness. Sleep Med Rev. 2011;15(1):65–C74. doi:10.1016/j.smrv.2010.06.004.
79. Jonassen F, Granerus G, Wetterqvist H. Histamine metabolism and female sex hormones in women. Acta Obstet Gynecol Scand. 1976;55(5):387–C94.
80. Padilla L, Asencio H, Fernandez W, et al. Effect of progesterone on norepinephrine release from mouse adrenergic terminals in vitro. Gen Pharmacol. 1991;22(4):647–C50.
81. Sharkey KM, Crawford SL, Kim S, Joffe H. Objective sleep interruption and reproductive hormone dynamics in the menstrual cycle. Sleep Med. 2014;15(6):688–C93. doi:10.1016/j.sleep.2014.02.003.
82. Baker FC, Kahan TL, Trinder J, Colrain IM. Sleep quality and the sleep electroencephalogram in women with severe premenstrual syndrome. Sleep. 2007;30(10):1283–C91.
83. Ko Y, Lee J-Y. Effects of feet warming using bed socks on sleep quality and thermoregulatory responses in a cool environment. J Physiol Anthropol. 2018;37:13. doi:10.1186/s40101-018-0172-z.
84. Van Someren EJ. More than a marker: interaction between the circadian regulation of temperature and sleep, age-related changes, and treatment possibilities. Chronobiol Int. 2000;17(3):313–C54.
85. Afsahri P, Salehnejad Z, Hekmat K, et al. Do sleeping disorders impair sexual function in married Iranian women of reproductive age? Results from a cross-sectional study. Psychiatry J. 2018;2018:1045738. doi:10.1155/2018/1045738.
86. Goldstein DS. Adrenal responses to stress. Cell Mol Neurobiol. 2010;30(8):1433–C40. doi:10.1007/s10571-010-9606-9.
87. Meerlo P, Sgoifo A, Suchecki D. Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med Rev. 2008;12(3):197–C210. doi:10.1016/j.smrv.2007.07.007.
88. Briançon-Marjollet A, Weiszenstein M, Henri M, et al. The impact of sleep disorders on glucose metabolism: endocrine and molecular mechanisms. Diabetol Metab Syndr. 2015;7(1):25. doi:10.1186/s13098-015-0018-3.
89. Van Cauter E. Sleep disturbances and insulin resistance. Diabet Med. 2011;28(12):1455–C62. doi:10.1111/j.1464-5491.2011.03459.x.
90. Helvaci N, Karabulut E, Demir AU, Yildiz BO. Polycystic ovary syndrome and the risk of obstructive sleep apnea: a meta-analysis and review of the literature. Endocr Connect. 2017;6(7):437–C45. doi:10.1530/EC-17-0129.
91. Teede H, Deeks A, Moran L. Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010;8:41. doi:10.1186/1741-7015-8-41.
92. Goudas VT, Dumesic DA. Polycystic ovary syndrome. Endocrinol Metab Clin North Am. 1997;26(4):893–C912.
93. Chaudhari AP, Mazumdar K, Mehta PD. Anxiety, depression, and quality of life in women with polycystic ovarian syndrome. Indian J Psychol Med. 2018;40(3):239–C46. doi:10.4103/IJPSYM.IJPSYM_561_17.
94. Murphy PJ, Myers BL, Badia P. Nonsteroidal anti-inflammatory drugs alter body temperature and suppress melatonin in humans. Physiol Behav. 1996;59(1):133–C39.
95. Tian R, Hou G, Li D, Yuan T-F. A possible change process of inflammatory cytokines in the prolonged chronic stress and its ultimate implications for health. Sci World J. 2014;2014:780616. doi:10.1155/2014/780616.
96. Burkhart K, Phelps JR. Amber lenses to block blue light and improve sleep: a randomized trial. Chronobiol Int. 2009;26(8):1602–C12. doi:10.3109/07420520903523719.
97. Gringras P, Middleton B, Skene DJ, Revell VL. Bigger, brighter, bluer-better? Current light-emitting devices –C adverse sleep properties and preventative strategies. Front Public Health. 2015;3:233. doi:10.3389/fpubh.2015.00233.
98. Onen SH, Onen F, Bailly D, Parquet P. [Prevention and treatment of sleep disorders through regulation of sleeping habits.] [In French] Presse Med. 1994;23(10):485–C89.
99. Lan L, Qian XL, Lian ZW, Lin YB. Local body cooling to improve sleep quality and thermal comfort in a hot environment. Indoor Air. 2018;28(1):135–C45. doi:10.1111/ina.12428.
100. Gilbert SS, van den Heuvel CJ, Ferguson SA, Dawson D. Thermoregulation as a sleep signalling system. Sleep Med Rev. 2004;8(2):81–C93. doi:10.1016/S1087-0792(03)00023-6.
101. Horne JA, Reid AJ. Night-time sleep EEG changes following body heating in a warm bath. Electroencephalogr Clin Neurophysiol. 1985;60(2):154–C57.
102. Unno K, Noda S, Kawasaki Y, et al. Reduced stress and improved sleep quality caused by green tea are associated with a reduced caffeine content. Nutrients. 2017;9(7):pii:E777. doi:10.3390/nu9070777.
103. White D, de Klerk S, Woods W, et al. Anti-stress, behavioural and magnetoencephalography effects of an l-theanine-based nutrient drink: a randomised, double-blind, placebo-controlled, crossover trial. Nutrients. 2016;8(1):53. doi:10.3390/nu8010053.
104. Birdsall TC. 5-Hydroxytryptophan: a clinically-effective serotonin precursor. Altern Med Rev. 1998;3(4):271–C280.
105. Hong K-B, Park Y, Suh HJ. Sleep-promoting effects of the GABA/5-HTP mixture in vertebrate models. Behav Brain Res. 2016;310:36–C41. doi:10.1016/j.bbr.2016.04.049.
106. Hong K-B, Park Y, Suh HJ. Two combined amino acids promote sleep activity in caffeine-induced sleepless model systems. Nutr Res Pract. 2018;12(3):208–C14. doi:10.4162/nrp.2018.12.3.208.
107. Stover PJ, Field MS. Vitamin B-B. Adv Nutr. 2015;6(1):132–C33. doi:10.3945/an.113.005207.
108. Mazzoli R, Pessione E. The neuro-endocrinological role of microbial glutamate and GABA signaling. Front Microbiol. 2016;7:1934. doi:10.3389/fmicb.2016.01934.
109. Umbrello G, Esposito S. Microbiota and neurologic diseases: potential effects of probiotics. J Transl Med. 2016;14(1):298. doi:10.1186/s12967-016-1058-7.
110. Park S-Y, Lee J-W, Lim S-D. The probiotic characteristics and GABA production of Lactobacillus plantarum K154 isolated from kimchi. Food Sci Biotechnol. 2014;23(6):1951–C7. doi:10.1007/s10068-014-0266-2.
111. Egashira N, Hayakawa K, Osajima M, et al. Involvement of GABA(A) receptors in the neuroprotective effect of theanine on focal cerebral ischemia in mice. J Pharmacol Sci. 2007;105(2):211–C14.
112. Hinz M, Stein A, Uncini T. 5-HTP efficacy and contraindications. Neuropsychiatr Dis Treat. 2012;8:323–C8. doi:10.2147/NDT.S33259.
113. Barrett E, Ross RP, O––Toole PW, et al. ?-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012;113(2):411–C17. doi:10.1111/j.1365-2672.2012.05344.x.
114. Hasler G, van der Veen JW, Grillon C, et al. Effect of acute psychological stress on prefrontal GABA concentration determined by proton magnetic resonance spectroscopy. Am J Psychiatry. 2010;167(10):1226–C31. doi:10.1176/appi.ajp.2010.09070994.
115. Ennour-Idrissi K, Maunsell E, Diorio C. Effect of physical activity on sex hormones in women: a systematic review and meta-analysis of randomized controlled trials. Breast Cancer Res. 2015;17(1):139. doi:10.1186/s13058-015-0647-3.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY-NC-ND 4.0). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.