Parkinson’s Disease: Possible Mechanisms for Nutritional Approaches
Christine E. Cherpak-Castagna, DCN
Maryland University of Integrative Health, 7750 Montpelier Rd, Laurel, MD 20723, USA
Sherryl J. Van Lare, DCN
Maryland University of Integrative Health, 7750 Montpelier Rd, Laurel, MD 20723, USA


Parkinson's disease
PD nutrition
Lewy bodies, ±-Synuclein
Striatal dopaminergic neurons


Parkinson’s disease (PD) is among the most common chronic neurodegenerative conditions, affecting 1% of those over 60 years of age, and involves motor and non-motor impairments. Alterations in normal physiology may become apparent years – in some cases, 10–20 years – before established diagnostic criteria are met. Thus, better clinical outcomes may result when practitioners utilize nutritional and supplement interventions that support reductions in neuroinflammation and neurodegeneration as early as possible. PD is a devastating, progressive neurodegenerative condition that has both hereditary and environmental components to its pathogenesis, and early identification of risk factors and onset is critical. The purpose of this review is to highlight various nutrition and supplement interventions that may positively affect disease onset and progression, and that warrant further research.



1. Tysnes O-B, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm (Vienna). 2017;124(8):901–5. doi:10.1007/s00702-017-1686-y.
2. DeMaagd G, Philip A. Parkinson’s disease and its management. P T. 2015;40(8):504–32.
3. Nazario LR, da Silva RS, Bonan CD. Targeting adenosine signaling in Parkinson’s disease: from pharmacological to non-pharmacological approaches. Front Neurosci. 2017;11:658. doi:10.3389/fnins.2017.00658.
4. Dickson DW. Parkinson’s disease and Parkinsonism: neuropathology. Cold Spring Harb Perspect Med. 2012;2(8):a009258. doi:10.1101/cshperspect.a009258.
5. Kushnareva Y, Murphy AN, Andreyev A. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem J. 2002;368(Pt 2):545–53. doi:10.1042/ BJ20021121.
6. Park J-S, Davis RL, Sue CM. Mitochondrial dysfunction in Parkinson’s disease: new mechanistic insights and therapeutic perspectives. Curr Neurol Neurosci Rep. 2018;18(5):21. doi:10.1007/s11910-018-0829-3.
7. Reeve AK, Grady JP, Cosgrave EM, et al. Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson’s disease. NPJ Parkinson’s Dis. 2018;4(1):9. doi:10.1038/s41531-018-0044-6.
8. Thomas B, Beal MF. Mitochondrial therapies for Parkinson’s disease. Mov Disord. 2010;25 Suppl 1:S155–60. doi:10.1002/mds.22781.
9. Michel PP, Hirsch EC, Hunot S. Understanding dopaminergic cell death pathways in Parkinson disease. Neuron. 2016;90(4):675–91. doi:10.1016/j. neuron.2016.03.038.
10. Rees RN, Acharya AP, Schrag A, et al. An early diagnosis is not the same as a timely diagnosis of Parkinson’s disease. F1000Res. 2018;7:1106. doi:10.12688/f1000research.14528.1.
11. Schrag A, Horsfall L, Walters K, et al. Prediagnostic presentations of Parkinson’s disease in primary care: a case-control study. Lancet Neurol. 2015;14(1):57–64. doi:10.1016/S1474-4422(14)70287-X.
12. Lebouvier T, Neunlist M, Bruley des Varannes S, et al. Colonic biopsies to assess the neuropathology of Parkinson’s disease and its relationship with symptoms. PLoS One. 2010;5(9):e12728. doi:10.1371/journal. pone.0012728.
13. Joseph J, Cole G, Head E, Ingram D. Nutrition, brain aging, and neurodegeneration. J Neurosci. 2009;29(41):12795–801. doi:10.1523/ JNEUROSCI.3520-09.2009.
14. Ferrari CKB. Functional foods, herbs and nutraceuticals: towards biochemical mechanisms of healthy aging. Biogerontology. 2004;5(5):275–89. doi:10.1007/ s10522-004-2566-z.
15. Mischley LK, Lau RC, Bennett RD. Role of diet and nutritional supplements in Parkinson’s disease progression. Oxid Med Cell Longev. 2017;2017:6405278. doi:10.1155/2017/6405278.
16. Seidl SE, Santiago JA, Bilyk H, Potashkin JA. The emerging role of nutrition in Parkinson’s disease. Front Aging Neurosci. 2014;6:36. doi:10.3389/fnagi.2014.00036.
17. Smith PJ, Blumenthal JA. Dietary factors and cognitive decline. J Prev Alzheimers Dis. 2016;3(1):53–64. doi:10.14283/jpad.2015.71.
18. Farooqui T, Farooqui AA. Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mech Ageing Dev. 2009;130(4):203–15. doi:10.1016/j. mad.2008.11.006.
19. Shen L. Associations between B vitamins and Parkinson’s disease. Nutrients. 2015;7(9):7197–208. doi:10.3390/nu7095333.
20. Gómez-Pinilla F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci. 2008;9(7):568–78. doi:10.1038/nrn2421.
21. Kim HG, Ju MS, Shim JS, et al. Mulberry fruit protects dopaminergic neurons in toxin-induced Parkinson’s disease models. Br J Nutr. 2010;104(1):8–16. doi:10.1017/ S0007114510000218.
22. Ellwanger JH, Molz P, Dallemole DR, et al. Selenium reduces bradykinesia and DNA damage in a rat model of Parkinson’s disease. Nutrition. 2015;31(2):359–65. doi:10.1016/j.nut.2014.07.004.
23. Nielsen SS, Franklin GM, Longstreth WT, et al. Nicotine from edible solanaceae and risk of Parkinson disease. Ann Neurol. 2013;74(3):472–7. doi:10.1002/ ana.23884.
24. Quik M, O’Leary K, Tanner CM. Nicotine and Parkinson’s disease: implications for therapy. Mov Disord. 2008;23(12):1641–52. doi:10.1002/mds.21900.
25. Fricker RA, Green EL, Jenkins SI, et al. The influence of nicotinamide on health and disease in the central nervous system. Int J Tryptophan Res. 2018;11:1178646918776658. doi:10.1177/1178646918776658.
26. Kennedy DO. B vitamins and the brain: mechanisms, dose and efficacy – a review. Nutrients. 2016;8(2):68. doi:10.3390/nu8020068.
27. Caruana M, Vassallo N. Tea polyphenols in Parkinson’s disease. Adv Exp Med Biol. 2015;863:117–37. doi:10.1007/978-3-319-18365-7_6.
28. Li F-J, Ji H-F, Shen L. A meta-analysis of tea drinking and risk of Parkinson’s disease. ScientificWorldJournal. 2012;2012:923464. doi:10.1100/2012/923464.
29. Pan T, Jankovic J, Le W. Potential therapeutic properties of green tea polyphenols in Parkinson’s disease. Drugs Aging. 2003;20(10):711–21.
30. Weinreb O, Mandel S, Amit T, Youdim MB. Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem. 2004;15(9):506–16. doi:10.1016/j.jnutbio.2004.05.002.
31. Caruana M, Cauchi R, Vassallo N. Putative role of red wine polyphenols against brain pathology in Alzheimer’s and Parkinson’s disease. Front Nutr. 2016;3:31. doi:10.3389/fnut.2016.00031.
32. Eriksson A-K, Löfving S, Callaghan RC, Allebeck P. Alcohol use disorders and risk of Parkinson’s disease: findings from a Swedish national cohort study 1972–2008. BMC Neurol. 2013;13(1):190. doi:10.1186/1471-2377-13-190.
33. Roshan MHK, Tambo A, Pace NP. Potential role of caffeine in the treatment of Parkinson’s disease. Open Neurol J. 2016;10:42–58. doi:10.2174/18742 05X01610010042.
34. Chen X, Ghribi O, Geiger JD. Caffeine protects against disruptions of the blood–brain barrier in animal models of Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis. 2010;20 Suppl 1:S127–41.
35. Lee M, McGeer EG, McGeer PL. Quercetin, not caffeine, is a major neuroprotective component in coffee. Neurobiol Aging. 2016;46:113–23. doi:10.1016/j. neurobiolaging.2016.06.015.
36. Scheperjans F, Aho V, Pereira PAB, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord. 2015;30(3):350–8. doi:10.1002/mds.26069.
37. Minato T, Maeda T, Fujisawa Y, et al. Progression of Parkinson’s disease is associated with gut dysbiosis: twoyear follow-up study. PLoS One. 2017;12(11):e0187307. doi:10.1371/journal.pone.0187307.
38. Lamuel-Raventos RM, Onge M-PSt. Prebiotic nut compounds and human microbiota. Crit Rev Food Sci Nutr. 2017;57(14):3154–63. doi:10.1080/10408398.2015.1096 763.
39. Umu ÖCO, Rudi K, Diep DB. Modulation of the gut microbiota by prebiotic fibres and bacteriocins. Microb Ecol Health Dis. 2017;28(1):1348886. doi:10.1080/1651 2235.2017.1348886.
40. Clairembault T, Leclair-Visonneau L, Coron E, et al. Structural alterations of the intestinal epithelial barrier in Parkinson’s disease. Acta Neuropathol Commun. 2015;3:12. doi:10.1186/s40478-015-0196-0.
41. Alpert PT. The role of vitamins and minerals on the immune system. Home Health Care Manag Pract. 2017;29(3):199–202. doi:10.1177/1084822317713300.
42. Saeed F, Nadeem M, Ahmed RS, et al. Studying the impact of nutritional immunology underlying the modulation of immune responses by nutritional compounds – a review. Food Agric Immunol. 2016;27(2):205–29. doi:10.1080/095 40105.2015.1079600.
43. Duggan C, Gannon J, Walker WA. Protective nutrients and functional foods for the gastrointestinal tract. Am J Clin Nutr. 2002;75(5):789–808. doi:10.1093/ ajcn/75.5.789.
44. Singh RK, Chang H-W, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transll Med. 2017;15(1):73. doi:10.1186/ s12967-017-1175-y.
45. Heineman HEO, Jaynes HO, Heflin JL. Pesticides – a dairy industry problem. J Dairy Sci. 1966;49(5):509–16. doi:10.3168/jds.S0022-0302(66)87906-7.
46. Chen H, O’Reilly E, McCullough ML, et al. Consumption of dairy products and risk of Parkinson’s disease. Am J Epidemiol. 2007;165(9):998–1006. doi:10.1093/aje/kwk089.
47. Samson K. Pesticide in milk may have caused PD-like damage. Neurology Today. 2016;16(2):1. doi:10.1097/01. NT.0000480653.11072.9e.
48. Houser MC, Tansey MG. The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinson’s Dis. 2017;3(1):3. doi:10.1038/s41531-016-0002-0.
49. Gocki J, Bartuzi Z. Role of immunoglobulin G antibodies in diagnosis of food allergy. Postepy Dermatol Alergol. 2016;33(4):253–6. doi:10.5114/ ada.2016.61600.
50. Ulluwishewa D, Anderson RC, McNabb WC, et al. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr. 2011;141(5):769–76. doi:10.3945/jn.110.135657.
51. Freeman LR, Haley-Zitlin V, Rosenberger DS, Granholm AC. Damaging effects of a high-fat diet to the brain and cognition: a review of proposed mechanisms. Nutr Neurosci. 2014;17(6):241–51. doi:10.1179/14768305 13Y.0000000092.
52. Dhaka V, Gulia N, Ahlawat KS, et al. Trans fats – sources, health risks and alternative approach – a review. J Food Sci Technol. 2011;48(5):534–41. doi:10.1007/ s13197-010-0225-8.
53. Morris MC, Tangney CC. Dietary fat composition and dementia risk. Neurobiol Aging. 2014;35 Suppl 2:S59–64. doi:10.1016/j.neurobiolaging.2014.03.038.
54. Dufault R, LeBlanc B, Schnoll R, et al. Mercury from chlor-alkali plants: measured concentrations in food product sugar. Environ Health. 2009;8(1):2. doi:10.1186/1476-069X-8-2.
55. Meng Q, Ying Z, Noble E, et al. Systems nutrigenomics reveals brain gene networks linking metabolic and brain disorders. EBioMedicine. 2016;7:157–66. doi:10.1016/j. ebiom.2016.04.008.
56. Bray GA. Potential health risks from beverages containing fructose found in sugar or high-fructose corn syrup. Diabetes Care. 2013;36(1):11–2. doi:10.2337/ dc12-1631.
57. Macdonald IA. A review of recent evidence relating to sugars, insulin resistance and diabetes. Eur J Nutr. 2016;55 Suppl 2:17–23. doi:10.1007/ s00394-016-1340-8.
58. Aviles-Olmos I, Limousin P, Lees A, Foltynie T. Parkinson’s disease, insulin resistance and novel agents of neuroprotection. Brain. 2013;136(2):374–84. doi:10.1093/brain/aws009.
59. Yue X, Li H, Yan H, et al. Risk of Parkinson disease in diabetes mellitus: an updated meta-analysis of population-based cohort studies. Medicine (Baltimore). 2016;95(18):e3549. doi:10.1097/MD.0000000000003549.
60. Parker K, Salas M, Nwosu VC. High fructose corn syrup: production, uses and public health concerns. BMBR. 2010;5(5):71–8.
61. Sharma A, Amarnath S, Thulasimani M, et al. Artificial sweeteners as a sugar substitute: are they really safe? Indian J Pharmacol. 2016;48(3):237–40. doi:10.4103/0253-7613.182888.
62. Maher TJ, Wurtman RJ. Possible neurologic effects of aspartame, a widely used food additive. Environ Health Perspect. 1987;75:53–7.
63. Tandel KR. Sugar substitutes: health controversy over perceived benefits. J Pharmacol Pharmacother. 2011;2(4):236–43. doi:10.4103/0976-500X.85936.
64. Choudhary AK, Lee YY. Neurophysiological symptoms and aspartame: what is the connection? Nutr Neurosci. 2018;21(5):306–16. doi:10.1080/10284 15X.2017.1288340.
65. Nair AT, Ramachandran V, Joghee NM, et al. Gut microbiota dysfunction as reliable non-invasive early diagnostic biomarkers in the pathophysiology of Parkinson’s disease: a critical review. J Neurogastroenterol Motil. 2018;24(1):30–42. doi:10.5056/jnm17105.
66. Ruiz-Ojeda FJ, Plaza-Díaz J, Sáez-Lara MJ, et al. Effects of sweeteners on the gut microbiota: a review of experimental studies and clinical trials. Adv Nutr. 2019;10 Suppl 1:S31–48. doi:10.1093/advances/nmy037.
67. Lohner S, Toews I, Meerpohl JJ. Health outcomes of non-nutritive sweeteners: analysis of the research landscape. Nutr J. 2017;16(1):55. doi:10.1186/ s12937-017-0278-x.
68. Shults CW, Haas RH, Passov D, et al. Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from Parkinsonian and nonParkinsonian subjects. Ann Neurol. 1997;42(2):261–4. doi:10.1002/ana.410420221.
69. Shults CW, Beal MF, Fontaine D, et al. Absorption, tolerability, and effects on mitochondrial activity of oral coenzyme Q10 in parkinsonian patients. Neurology. 1998;50(3):793–95.
70. Shults CW, Oakes D, Kieburtz K, et al. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol. 2002;59(10):1541–50.
71. Storch A, Jost WH, Vieregge P, et al. Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q(10) in Parkinson disease. Arch Neurol. 2007;64(7):938–44. doi:10.1001/ archneur.64.7.nct60005.
72. Strijks E, Kremer HPH, Horstink MWIM. Q10 therapy in patients with idiopathic Parkinson’s disease. Mol Aspects Med. 1997;18:237–40. doi:10.1016/ S0098-2997(97)00008-3.
73. Holmay MJ, Terpstra M, Coles LD, et al. N-acetylcysteine boosts brain and blood glutathione in Gaucher and Parkinson’s diseases. Clin Neuropharmacol. 2013;36(4):103–6. doi:10.1097/WNF.0b013e31829ae713.
74. Martínez M, Martínez N, Hernández AI, et al. Hypothesis: can N-acetylcysteine be beneficial in Parkinson’s disease? Life Sci. 1999;64(15):1253–7.
75. Schulz JB, Lindenau J, Seyfried J, Dichgans J. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem. 2000;267(16):4904–11.
76. Dringen R, Hamprecht B. N-acetylcysteine, but not methionine or 2-oxothiazolidine-4-carboxylate, serves as cysteine donor for the synthesis of glutathione in cultured neurons derived from embryonal rat brain. Neurosci Lett. 1999;259(2):79–82.
77. Celik M, Barkut IK, Oncel C, Forta H. Involuntary movements associated with vitamin B12 deficiency. Parkinsonism Relat Disord. 2003;10(1):55–7.
78. de Souza A, Moloi MW. Involuntary movements due to vitamin B12 deficiency. Neurol Res. 2014;36(12):1121–8. doi:10.1179/1743132814Y.0000000396.
79. Fernandes de Abreu DA, Eyles D, Féron F. Vitamin D, a neuro-immunomodulator: implications for neurodegenerative and autoimmune diseases. Psychoneuroendocrinology. 2009;34 Suppl 1:S265–77. doi:10.1016/j.psyneuen.2009.05.023.
80. Knekt P, Kilkkinen A, Rissanen H, et al. Serum vitamin D and the risk of Parkinson’s disease. Arch Neurol. 2010;67(7):808–11. doi:10.1001/archneurol.2010.120.
81. Harish G, Venkateshappa C, Mythri RB, et al. Bioconjugates of curcumin display improved protection against glutathione depletion mediated oxidative stress in a dopaminergic neuronal cell line: implications for Parkinson’s disease. Bioorg Med Chem. 2010;18(7):2631–8. doi:10.1016/j.bmc.2010.02.029.
82. Pandey N, Strider J, Nolan WC, et al. Curcumin inhibits aggregation of alpha-synuclein. Acta Neuropathol. 2008;115(4):479–89. doi:10.1007/s00401-007-0332-4.
83. Pathak-Gandhi N, Vaidya ADB. Management of Parkinson’s disease in Ayurveda: medicinal plants and adjuvant measures. J Ethnopharmacol. 2017;197:46–51. doi:10.1016/j.jep.2016.08.020.
84. Manyam BV, Dhanasekaran M, Hare TA. Effect of antiparkinson drug HP-200 (Mucuna pruriens) on the central monoaminergic neurotransmitters. Phytother Res. 2004;18(2):97–101. doi:10.1002/ptr.1407.
85. Cilia R, Laguna J, Cassani E, et al. Mucuna pruriens in Parkinson disease: a double-blind, randomized, controlled, crossover study. Neurology. 2017;89(5):432–8. doi:10.1212/WNL.0000000000004175.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY-NC-ND 4.0). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.