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ABSTRACT

Glutathione (GSH), the most abundant intracellular low molecular weight thiol, 
has diverse physiological roles, and altered GSH status has been implicated in a 
number of chronic, acute, and age-related diseases, as well as the aging process 
itself. Its function as an antioxidant and determinant of cellular redox potential 
is crucial both for protection from reactive oxygen species as well as a signaling 
molecule involved in cellular proliferation, cell cycle regulation, and apoptosis. 
It is also an important thiol buffer, maintaining sulfhydryl groups in their 
reduced form, an additional mechanism for cellular signaling. 

Glutathione has also emerged a key modulator of xenobiotic toxicity, most 
notably the persistent organic pollutants which are associated with many 
diseases of impaired metabolic activity, including diabetes, obesity, and 
cardiovascular disease. γ-glutamyl transpeptidase (GGT), an enzyme critical 
to the catabolism of GSH and its conjugates, appears to be an important 
biomarker for xenobiotic exposure, and for increased GSH demand. We review 
the physiological functions of glutathione, the limiting factors for its synthesis, 
as well as its clinical relevance, with particular emphasis on detoxification of 
environmental pollutants. We also review therapeutic approaches for enhancing 
GSH status. 
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Introduction

There is a growing recognition of the importance 
of glutathione (GSH) physiology, and of the 
number of physiological functions involving this 
small but critical tripeptide. Given its potent redox 
capabilities, and its high intracellular concentration 
and widespread distribution, its role as a potent 
defense mechanism against oxidative and 
electrophilic stress is well-established.1 Yet as our 
understanding of cellular signaling and regulatory 
pathways has developed, so has our insight into 
the involvement of GSH homeostasis in many 
other key processes, including the regulation of 
cellular proliferation and apoptosis and the post-
transcriptional modification of proteins through 
S-glutathionylation, as well as the importance 
of GSH in the detoxification of hydroperoxides 
and diverse xenobiotic compounds. Additionally, 
GSH has been shown to be vital to mitochondrial 
function and maintenance of mtDNA,2 and may be 
relevant to DNA methylation.3

Given the diverse roles of GSH in cellular 
physiology, the clinical importance of altered 
glutathione homeostasis is gaining well-deserved 
attention. Disturbances in GSH homeostasis have 
been implicated in neurodegenerative disorders, 
liver disease, cystic fibrosis, pulmonary and 
cardiovascular diseases, as well as the chronic 
age-related diseases and the aging process 

itself .4 Recent data also suggests it plays a role 
in metabolic and inflammatory diseases such as 
multiple sclerosis, the metabolic syndrome, and 
diabetes, at least in part by influencing the effect of 
multiple environmental toxins, an underappreciated 
yet surprisingly significant association. In this 
review, we will briefly describe glutathione 
physiology and the clinical implications of altered 
GSH homeostasis, as well as research on the use 
of various forms of glutathione as a therapeutic 
strategy. In light of the growing risk of persistent 
organic pollutants, particular attention will be given 
to their influence on chronic disease development, 
and how GSH may modulate this risk. 

Glutathione Biochemistry and 
Key Physiological Roles 

Background

Glutathione is a ubiquitous molecule, the major 
non-protein cellular thiol, found in millimolar 
concentrations in many cellular compartments and 
organelles, and is produced in all organs, especially 
the liver. It exists in both its reduced state (GSH) as 
well as an oxidized state (GSSG), and the relative 
amounts of each determine the redox status of a 
cell (Fig. 1.A_B). Cells at rest have a GSH/GSSG 
ratio exceeding 100, while in those exposed to 
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Figure 1.A  Glutathione 
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oxidant stress the ratio drops as low as between 
10 and 1, making this ratio a reasonable predictor 
of the cellular redox state1. In addition to its role 
as a cellular antioxidant, because it is present in 
such high amounts, glutathione also functions as 
a thiol buffer, maintaining the sulfhydryl groups 
of many cellular proteins in their reduced form. 
Thus the GSH/GSSG ratio is important to normal 
functioning and is a likely contributor to cellular 
signaling pathways by activating or inactivating 
key thiol-containing enzymes.5

Glutathione is produced exclusively in the cytosol, 
yet it is delivered to other cellular compartments, 
including the mitochondria, peroxisomes, 
endoplasmic reticulum, and the nucleus, as 
well as the extracellular space to be utilized by 
other tissues. For example, in the lungs, a high 
concentration of GSH is secreted by epithelial 
cells into a thin layer of fluid surrounding areas of 
gas exchange, and in the liver significant amounts 
are released into the plasma and bile.6 A dynamic 

balance is maintained between the synthesis, 
consumption, and transport of GSH, all of which 
determine its intracellular concentration. GSH 
is synthesized in two steps, both ATP-dependent 
processes, catalyzed by the enzymes GCL 
(glutamate-cysteine ligase, aka γ-glutamylcysteine 
synthetase) and glutathione synthetase, and is 
regenerated by six enzyme-catalyzed reactions, 
known as the γ-glutamyl cycle. While glutathione 
synthesis is controlled by multiple factors, GCL 
is the main determinant, because the rate-limiting 
step is the cellular level of the amino acid cysteine.7 
GCL is in part regulated by GSH feedback 
inhibition, thus if GSH is depleted due to oxidative 
stress, inflammation, or exposure to xenobiotics, 
de novo synthesis of GSH is upregulated, as is 
cysteine synthesis.8 Cysteine is also supplied by the 
plasma enzyme γ-glutamyl transpeptidase (GGT) 
through a “salvage pathway”, and will be discussed 
in greater detail below. The reduction of GSSG 
is catalyzed by GSH reductase (GR), utilizing 
NADPH in the process.9
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Figure 1.B  Glutathione disulfide
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Physiological Functions

Detoxification

All of glutathione’s reactions are via one of two 
mechanisms; those involving the γ-glutamyl portion 
of GSH, mediated by γ-glutamyl transpeptidases, 
with the rest involving the sulfhydryl moiety, 
which is responsible for the redox and nucleophilic 
reactions.10 Detoxification of both xenobiotic and 
endogenous compounds is a critical function of 
glutathione, and the one discussed here in greater 
detail. In addition to neutralizing endogenously 
generated reactive oxygen and nitrogen species, 
GSH is known to facilitate the plasma membrane 
transport of toxins by at least four different 
mechanisms, the most important of which is the 
formation of glutathione S-conjugates.11 GSH 
conjugation (followed by secretion from the cell) 
may be either spontaneous or catalyzed by one of 
several enzymes, including the GSH-transferases 
(GSTs), which have wide substrate diversity. This 
allows for reactions with a broad spectrum of 
both physiological metabolites (such as estrogen, 
prostaglandins, and leukotrienes) and xenobiotics 
(including acetaminophen, persistent organic 
pollutants, and toxic metals such as mercury, 
arsenic, and lead).10 There may also be significant 
interindividual differences in enzymatic capacity. 
For example, genetic polymorphisms in GSTs, 
GCL, and selenoprotein genes were shown to 
influence mercury body burdens among heavy fish 
consumers (measured as erythrocyte total mercury 
levels), as well as urine and hair mercury levels 
among dental professionals.12,13

The associations between glutathione, chronic 
disease, and environmental pollutants appear to 
be of extraordinary significance, and yet often go 
unrecognized. Recent data has linked xenobiotic 
exposure to an increased risk for a number of 
cardiometabolic diseases, including cardiovascular 
disease, obesity, and diabetes, and it may be that 
depletion of glutathione levels plays a significant 
role in this risk, or at the very least can serve as 
a risk biomarker. For example, an analysis of 
NHANES (’99-02) data revealed that individuals 
with the highest serum levels of the six persistent 
organic pollutants (POPs) measured had a dose-
dependent increase in risk for diabetes, up to an 
astonishing 38-fold increase.14 Specific POPs have 

been associated with a higher risk for peripheral 
neuropathy among those with either impaired 
fasting glucose or diabetes, beyond the heightened 
risk due to diabetes itself.15 Quite remarkably, in 
those with low POP levels, the typically robust 
association between diabetes and obesity was 
not observed in a nested case-controlled study, 
suggesting that obesity may exaggerate the 
metabolic disturbances caused by POPs (perhaps 
because adipose tissue provides a reservoir for 
fat-soluble toxins), rather than being directly 
responsible for the altered metabolism.16, 17 This 
hypothesis was supported in a recent study with 
a 20-year follow-up, which found chronic low 
dose exposure to POPs predicted excess adiposity, 
dyslipidemia, and insulin resistance among 
participants without diabetes, in a U-shaped fashion 
(characteristic of endocrine disruption). Specific 
abnormalities were observed for different classes 
of POPs; for example, some predicted LDL levels, 
others triglyceride levels, and some were predictive 
of future BMI (Fig 2). As the authors point out, 
these findings may help to explain why these 
metabolic abnormalities occur in a cluster (such as 
found in the metabolic syndrome), partly because 
people are exposed to low doses of various POPs 
simultaneously.18 Increased risk with higher serum 
POP levels has also been found for the development 
of cardiovascular disease,19 hypertension,20 insulin 
resistance,21 and the metabolic syndrome.22 

Global Hypomethylation

In a commentary by Lee, et al., a hypothesis was 
proposed which linked chronic low dose exposure to 
POPs to global hypomethylation, as a consequence 
of GSH depletion.23 Global hypomethylation 
has been associated with cancer, atherosclerosis, 
as well as the aging process.24 Alterations in 
methylation patterns are also a fundamental 
mechanism for epigenetic modifications, allowing 
for transgenerational effects. In the model proposed 
by Lee, homocysteine is shunted away from 
the methionine synthesis pathway and toward 
the GSH synthesis pathway, creating a relative 
deficiency of methyl donors in order to keep up 
with increased demand for the glutathione needed 
for POP conjugation (Fig 3). The decline in GSH 
synthesis associated with aging combined with 
an increase in body burden of chemicals over a 
lifespan contribute to age-related hypomethylation. 

Glutathione: Physiological and Clinical Relevance
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This is exacerbated by nutrient deficiencies, such 
as folate and vitamin B12, which are necessary for 
generating methionine. Studies in Inuit and Korean 
populations have supported the link between 
POP exposure and global hypomethylation.25,26 
Interestingly, homocysteine levels have been 
positively associated with serum GGT, suggesting 
elevations in homocysteine may at least partly 
be due to increased shunting toward glutathione 
synthesis in response to increased GSH demands, 
though this has not been proven as of yet.27

GGT

As mentioned previously, GGT is a plasma enzyme 
expressed mainly on the apical surface of cells, and 
the only enzyme capable of breaking the γ-linkage 
found in GSH and GS H-conjugates. After further 
hydrolysis, the residual amino acids are taken up by 
the cell’s specific transporters, providing the rate-
limiting cysteine through this catabolic “salvage 
pathway”. Increases in GGT levels, therefore, are 
an indicator of an increased demand for glutathione 

Glutathione: Physiological and Clinical Relevance

Effects of p,p’-DDE on BMI, dyslipidemia, and insulin resistance. Adjusted means of year 20 BMI, triglycerides, HDL-cholesterol, 
and HOMA-IR according to serum concentrations of p,p’-DDE at year 2. Adjusting variables were age, sex, race, BMI, triglycerides, 
and total cholesterol at year 2. Year 20 HDL-cholesterol and HOMA-IR were additionally adjusted for their baseline values at year 2 
and year 7, respectively.

Lee DH, Steffes MW, Sjödin A, Jones RS, Needham LL, Jacobs DR Jr. Low dose organochlorine pesticides and polychlorinated 
biphenyls predict obesity, dyslipidemia, and insulin resistance among people free of diabetes. PLoS One. 2011 Jan 26;6(1):e15977. 
Reprinted under the terms of the Creative Commons Attribution License.
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synthesis, likely due to xenobiotic exposure, an 
association which appears to be well-supported.

For instance, a 4-year prospective study of over 
4000 healthy men found that an increase in 
GGT was associated with an increased risk for 
diabetes, even while in its normal range. Men 
with GGT levels < 9 U/I had the lowest risk, with 
a dose-dependent increase in risk at higher GGT 
levels, as high as 26-fold in those with levels 
over 50 U/I. It is worth noting that even among 
those men with levels between 40-50 U/I, a level 
considered to be in the normal range, a nearly 

20-fold increase in risk was found.28 This has led 
to the hypothesis that elevations in GGT reflect 
increasing xenobiotic-GSH conjugation, including 
POPs,29,30 with preliminary evidence linking 
GGT levels to polycyclic aromatic hydrocarbon 
exposure.31 Associations between increases in 
GGT and the metabolic syndrome32 both fatal and 
non-fatal coronary heart disease (CHD) events,33 
atherosclerosis and fatty liver,34 gestational 
diabetes,35 cancer,36 hypertension,37 and carotid 
intima-media thickness38 have been documented in 
large and well-conducted studies. Although alcohol 
may increase GGT levels, elevations in GGT 
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A hypothetical unifying mechanism linking DNA hypomethylation due to chemicals and nutrient deficiency or imbalance. Vit, 
vitamin. DNA methylation pattern can be disturbed because of depletion of GSH when it is chronically consumed for conjugation of 
chemicals and their metabolites. Under usual circumstances, metabolism of homocysteine contributes to both the methionine and GSH 
synthesis pathways. In the presence of chemicals such as persistent organic pollutants that deplete GSH, contribution to the methio-
nine pathway may bokokokoookoe diminished because of greater need to synthesize GSH (numbered boxes on the right).

Lee DH, Jacobs DR Jr, Porta M. Hypothesis: a unifying mechanism for nutrition and chemicals as lifelong modulators of DNA hypo-
methylation. Environ Health Perspect. 2009 Dec;117(12):1799-802. Reprinted under the terms of the Creative Commons Attribution 
License.
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increase risk independently of alcohol intake.39 If 
conclusively proven, this may help to explain the 
rapid rise is diabetes and metabolic disturbances, 
and offer the possibility of more specifically 
treating the underlying dysfunctions.

Oxidative Stress and Cell-cycle 
Regulation 

As mentioned above, the GSH/GSSG ratio is an 
important determinant of a cell’s redox potential. 
GSH directly scavenges diverse cellular oxidants, 
including superoxide anion, the hydroxyl 
radical, nitric oxide and carbon radicals, while 
GSH catalytically detoxifies hydroperoxides, 
peroxynitrite, and lipid peroxides by the action 
of GSH peroxidases (GPX) and peroxiredoxins 
(PXR).40 Accumulation of GSSG due to oxidative 
stress is directly toxic to cells, inducing apoptosis 
by activation of the SAPK/MAPK pathway.41 
Indeed, the role of GSH in apoptosis is gaining 
recognition as quite significant, and is mediated 
through several potential pathways, including the 
post-translational modification of proteins such 
as glutathionylation.40 Glutathione depletion is 
certainly a trigger for apoptosis, although it is 
unclear whether it is mitochondrial or cytosol 
pools of GSH that are the determining factor.42 
Glutathione also may modulate nitric oxide toxicity 
(at least in the brain), as a recent study found that 
GSH depletion was followed by excessive protein 
nitration, leading to neuronal death.43

Nuclear GSH levels also have a role in regulating 
cellular proliferation, and influence both telomerase 
activity and histone function via epigenetic 
control.44 Thus glutathione is perhaps uniquely 
positioned to not only provide cellular protection 
against oxidative and xenobiotic stress, but to also 
directly regulate cellular activity, including cell 
cycle control and induction of apoptosis in overly 
damaged cells. The recent shift in perspective from 
viewing oxidants as merely “damaging agents” to 
key signaling molecules is an important one, and 
one which places GSH homeostasis as a central 
mediator of these communications.45 

Mitochondrial Function 

Mitochondria contain 10-15% of total cellular 
glutathione, all of which is produced in the cytosol. 
Mitochondrial membrane fluidity partly determines 
this uptake. For example, increased cholesterol 
content of the inner mitochondrial membrane 
has been shown to impair GSH transport.46 As 
mentioned previously, mitochondrial glutathione 
(mGSH) is critical to maintaining the redox 
environment within these organelles, and serves 
as an important antioxidant, thiol buffer, and key 
signaling molecule. mGSH has been shown to be 
essential for mitochondrial respiration, at least in 
part by maintaining the mitochondrial genome, i.e., 
mtDNA, which is completely lost following GSH 
depletion.47

Considering that many chronic age-related diseases 
appear to have some degree of mitochondrial 
dysfunction as part of their etiology, it is notable 
that alterations in mGSH homeostasis may be a 
central factor in this dysfunction. For example, 
type 2 diabetes has well-documented mitochondrial 
oxidative stress, accompanied by depleted or 
oxidized GSH levels.48,49 Also, a substantial 
decrease in glutathione levels precedes the 
mitochondrial dysfunction and neuronal death 
found in Parkinson’s disease, suggesting GSH 
depletion may initiate the subsequent impairment.50 
It also suggests that increasing GSH levels may 
have potential benefit toward preventing diseases 
associated with mitochondrial dysfunction. 

Clinical relevance

The list of conditions associated with impaired 
GSH homeostasis continues to grow, and reflects 
the importance and diversity of glutathione’s 
cellular functions. The most well-known 
include neurodegenerative diseases (particularly 
Parkinson’s and Alzheimer’s disease), pulmonary 
diseases (COPD, asthma, and acute respiratory 
distress syndrome), cystic fibrosis, immune diseases 
(HIV, autoimmune disease), cardiovascular diseases 
(hypertension, myocardial infarction, cholesterol 
oxidation), as well as diseases associated with 
age-related oxidation (such as cataracts, macular 
degeneration, hearing impairment, and glaucoma), 
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as well as the aging process itself. Specifically, a 
decrease in GSH synthesis has been implicated 
as instrumental to the aging process and 
supplementation with glutathione precursors were 
shown to fully restore GSH status.51,52 Furthermore, 
GSH status has been found to parallel telomerase 
activity, an important indicator of lifespan.53 
Finally, although adequate glutathione is an 
important defense against numerous carcinogens, 
several cancer types have been shown to have 
elevated GSH levels, making them more resistant 
to both apoptosis and chemotherapy/radiation.4 
Thus although therapies which enhance glutathione 
synthesis (such as N-acetylcysteine) may protect 
against chemotherapy related toxicities, they may 
also be contraindicated during treatment for specific 
cancer cell lines.

Evidence that glutathione is involved in the 
metabolic disturbances which underlie diabetes, 
obesity, insulin resistance, and the metabolic 
syndrome continues to grow as well. In addition to 
the relevance of POP conjugation cited previously, 
hyperglycemia and hyperinsulinemia appear to 
directly inhibit glutathione synthesis (GCL), 
and the increased production of reactive oxygen 
species which accompanies diabetes further 
depletes GSH levels.54,55 Increased consumption 
of NADPH may also impair glutathione reductase 
activity56. Evidence from type 1 diabetes also 
points to an increase in GSH utilization, which 
in itself was associated with poorer glucose 
control.57 The “perfect storm” of obesity, oxidative 
stress, inflammation, adipocyte dysfunction, and 
the related metabolic abnormalities may also be 
linked by glutathione depletion. Decreased GSH 
levels have been shown to activate NF-kB, further 
impairing mitochondrial function and creating 
a vicious cycle.58,59 Lastly, athletic performance 
may also be influenced by glutathione status, as 
muscle activity increases reactive oxygen and 
nitrogen species, utilizing GSH in the process. 
Muscle fatigue has been shown to be delayed by 
the use of N-acetylcysteine (NAC), which supports 
glutathione synthesis.60,61 

Therapeutic Interventions

Clinical Examples and Therapeutic 
Forms

N-acetylcysteine (NAC)

Improving cellular glutathione status remains a 
clinical challenge, though interventions which 
enhance glutathione synthesis have for the most 
part been successful, most notably N-acetylcysteine 
(NAC). As cited above, the amino acid cysteine 
is a rate-limiting factor for GSH synthesis, and a 
variety of both clinical trials and in-vitro/in-vivo 
data suggest that supplying cysteine as NAC is an 
effective strategy for enhancing GSH production 
and intracellular cysteine.62 Intravenous NAC has 
been utilized for some time to treat acetaminophen 
and non-acetaminophen induced acute liver 
failure by restoring the concentration of GSH, and 
has been found to be safe and effective.63 It has 
also been used successfully for the treatment of 
acute respiratory distress syndrome at a dose of 
150mg/kg on day one followed by 50mg/kg for 
3 days, with efficacy in part determined by GST 
polymorphisms.64,65 Although some trials have not 
found benefit,66 considerable evidence suggests 
it also provides renal protection when given 
intravenously prior to coronary angiography.67 In 
patients undergoing coronary artery bypass and/
or valvular surgery, intravenous NAC was shown 
to reduce the incidence of post-operative atrial 
fibrillation.68 It was also shown to attenuate fatigue 
in endurance athletes in a small placebo-controlled 
trial.69

Yet its use is not limited to intravenous infusions, 
as oral NAC has also shown to be effective for 
increasing glutathione levels and markers of thiol 
status.70 For example, in a randomized double-
blinded trial, NAC (600mg twice per day) given 
with L-arginine (1200mg per day) to diabetic 
men with hypertension lowered blood pressure, 
and improved many markers of endothelial 
function and inflammation, including C-reactive 
protein, fibrinogen, and LDL-cholesterol.71 
NAC dosed at 1g twice per day was shown to 
significantly improve depression in patients with 
bipolar disorder,72 with 1.2g per day improving 
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physical performance among COPD patients in 
a randomized trial.73 A previous meta-analysis 
of NAC use in COPD found that it reduced the 
occurrence of exacerbations by roughly half over 
the treatment period, an effect somewhat attenuated 
by simultaneous steroid use, but not active 
smoking.74 Men with idiopathic infertility given 
600mg per day had improvement in several semen 
parameters as well as plasma antioxidant status.75 
A small pilot study of women within 5 years of 
menopause given 2g NAC per day suggests it may 
reduce bone resorption, warranting larger trials.76 

The ability of NAC to cross the blood brain barrier 
has been questioned, an important consideration for 
use in neurodegenerative diseases. Cysteinylglycine 
or γ-glutamylcysteine have been proposed as 
possible alternatives.77 In a trial of adolescents with 
poorly controlled type 1 diabetes, a dose of 30-
45mg/kg/day NAC failed to correct several markers 
of glutathione status, suggesting either a higher 
dose or alternative therapies may be indicated in 
this population.78 A recent study of patients with 
poorly controlled type 2 diabetes found that dietary 
supplementation of the amino acids cysteine and 
glycine, markers of glutathione synthesis and 
plasma oxidative stress were both improved.79 As 
mentioned previously, these same amino acids 
given to elderly individuals also fully restored 
glutathione synthesis.

Glutathione

A number of trials have been done utilizing 
glutathione in various forms, with mixed efficacy. 
Intravenous (IV) glutathione is limited by an 
extremely short half-life in the plasma, and it 
cannot cross cell membranes intact, but must be 
broken down and resynthesized within the cell. 
Nonetheless, two IV studies have been published 
related to Parkinson’s disease, one open-label 
which found significant improvement and a slowing 
of the disease, and one randomized and double-
blinded which found only mild symptomatic 

improvement.80,81 In patients with peripheral artery 
disease, IV glutathione was shown to improve 
pain-free walking distance and several markers of 
macro- and microcirculation in a randomized and 
double-blinded trial.82 A recent trial comparing IV 
glutathione to IV N-acetylcysteine found the former 
to be more effective in preventing contrast-induced 
nephropathy.83 

Because oral glutathione is poorly absorbed and 
rapidly degraded in the gut, it is not often used in 
clinical trials. The use of nebulized GSH was used 
in a small but randomized pilot trial of patients 
cystic fibrosis, and found to improve several 
clinical indicators, such as peak flow.84 Children 
with chronic otitis media with effusion given 
glutathione as a nasal aerosol had improvement 
in 67% of patients, versus only 8% of controls.85 
A small study of children with autism spectrum 
disorders found that both oral lipoceutical and 
transdermal glutathione had some efficacy in 
improving plasma reduced glutathione levels.86 

Additional Therapies and Concerns

A number of additional therapies have been shown 
to either modulate GSH status or glutathione-
related enzymes, though lack extensive research. 
Both exercise and dietary interventions have 
been shown to increase GSH levels, particularly 
moderate exercise (versus vigorous exercise) 
and consumption of cruciferous vegetables.87-89 
Additional therapies include resveratrol,90 
selenium,91 whey protein,92,93 lipoic acid,94,95 
pycnogenol,96 spirulina,97 silymarin,98 and 
sulforaphane.99

Conclusion

Glutathione continues to be a critical aspect of 
cellular function, perhaps now more than ever in 
an age of ubiquitous environmental insults. Its 
physiological relevance is well-established, not 
only as a potent antioxidant and thiol source, but 
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as a regulator of a myriad of cellular functions, as a 
detoxifier of numerous endogenous and exogenous 
toxins, as a key modulator of cellular signaling and 
proliferation, and as a vital aspect of mitochondrial 
function. Its clinical relevance extends not 
only to diseases with known oxidative stress or 
glutathione deficiencies, but to many of today’s 
chronic diseases, as well as the aging process 
itself. As research gains traction documenting the 
harmful effects of xenobiotics such as persistent 
organic pollutants and toxic metals, and their role

in causing the metabolic dysfunctions so prevalent 
today, optimal glutathione status appears to be an 
essential determinant of health. 
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